Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptomics Identifies Modules of Differentially Expressed Genes and Novel Cyclotides in Viola pubescens.

Identifieur interne : 000651 ( Main/Exploration ); précédent : 000650; suivant : 000652

Transcriptomics Identifies Modules of Differentially Expressed Genes and Novel Cyclotides in Viola pubescens.

Auteurs : Anne L. Sternberger [États-Unis] ; Megan J. Bowman [États-Unis] ; Colin P S. Kruse [États-Unis] ; Kevin L. Childs [États-Unis] ; Harvey E. Ballard [États-Unis] ; Sarah E. Wyatt [États-Unis]

Source :

RBID : pubmed:30828342

Abstract

Viola is a large genus with worldwide distribution and many traits not currently exemplified in model plants including unique breeding systems and the production of cyclotides. Here we report de novo genome assembly and transcriptomic analyses of the non-model species Viola pubescens using short-read DNA sequencing data and RNA-Seq from eight diverse tissues. First, V. pubescens genome size was estimated through flow cytometry, resulting in an approximate haploid genome of 455 Mbp. Next, the draft V. pubescens genome was sequenced and assembled resulting in 264,035,065 read pairs and 161,038 contigs with an N50 length of 3,455 base pairs (bp). RNA-Seq data were then assembled into tissue-specific transcripts. Together, the DNA and transcript data generated 38,081 ab initio gene models which were functionally annotated based on homology to Arabidopsis thaliana genes and Pfam domains. Gene expression was visualized for each tissue via principal component analysis and hierarchical clustering, and gene co-expression analysis identified 20 modules of tissue-specific transcriptional networks. Some of these modules highlight genetic differences between chasmogamous and cleistogamous flowers and may provide insight into V. pubescens' mixed breeding system. Orthologous clustering with the proteomes of A. thaliana and Populus trichocarpa revealed 8,531 sequences unique to V. pubescens, including 81 novel cyclotide precursor sequences. Cyclotides are plant peptides characterized by a stable, cyclic cystine knot motif, making them strong candidates for drug scaffolding and protein engineering. Analysis of the RNA-Seq data for these cyclotide transcripts revealed diverse expression patterns both between transcripts and tissues. The diversity of these cyclotides was also highlighted in a maximum likelihood protein cladogram containing V. pubescens cyclotides and published cyclotide sequences from other Violaceae and Rubiaceae species. Collectively, this work provides the most comprehensive sequence resource for Viola, offers valuable transcriptomic insight into V. pubescens, and will facilitate future functional genomics research in Viola and other diverse plant groups.

DOI: 10.3389/fpls.2019.00156
PubMed: 30828342
PubMed Central: PMC6384259


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptomics Identifies Modules of Differentially Expressed Genes and Novel Cyclotides in
<i>Viola pubescens</i>
.</title>
<author>
<name sortKey="Sternberger, Anne L" sort="Sternberger, Anne L" uniqKey="Sternberger A" first="Anne L" last="Sternberger">Anne L. Sternberger</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental and Plant Biology, Ohio University, Athens, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bowman, Megan J" sort="Bowman, Megan J" uniqKey="Bowman M" first="Megan J" last="Bowman">Megan J. Bowman</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Biology, Michigan State University, East Lansing, MI, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, Michigan State University, East Lansing, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kruse, Colin P S" sort="Kruse, Colin P S" uniqKey="Kruse C" first="Colin P S" last="Kruse">Colin P S. Kruse</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental and Plant Biology, Ohio University, Athens, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Childs, Kevin L" sort="Childs, Kevin L" uniqKey="Childs K" first="Kevin L" last="Childs">Kevin L. Childs</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Biology, Michigan State University, East Lansing, MI, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, Michigan State University, East Lansing, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ballard, Harvey E" sort="Ballard, Harvey E" uniqKey="Ballard H" first="Harvey E" last="Ballard">Harvey E. Ballard</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental and Plant Biology, Ohio University, Athens, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wyatt, Sarah E" sort="Wyatt, Sarah E" uniqKey="Wyatt S" first="Sarah E" last="Wyatt">Sarah E. Wyatt</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental and Plant Biology, Ohio University, Athens, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30828342</idno>
<idno type="pmid">30828342</idno>
<idno type="doi">10.3389/fpls.2019.00156</idno>
<idno type="pmc">PMC6384259</idno>
<idno type="wicri:Area/Main/Corpus">000A06</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A06</idno>
<idno type="wicri:Area/Main/Curation">000A06</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A06</idno>
<idno type="wicri:Area/Main/Exploration">000A06</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptomics Identifies Modules of Differentially Expressed Genes and Novel Cyclotides in
<i>Viola pubescens</i>
.</title>
<author>
<name sortKey="Sternberger, Anne L" sort="Sternberger, Anne L" uniqKey="Sternberger A" first="Anne L" last="Sternberger">Anne L. Sternberger</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental and Plant Biology, Ohio University, Athens, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bowman, Megan J" sort="Bowman, Megan J" uniqKey="Bowman M" first="Megan J" last="Bowman">Megan J. Bowman</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Biology, Michigan State University, East Lansing, MI, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, Michigan State University, East Lansing, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kruse, Colin P S" sort="Kruse, Colin P S" uniqKey="Kruse C" first="Colin P S" last="Kruse">Colin P S. Kruse</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental and Plant Biology, Ohio University, Athens, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Childs, Kevin L" sort="Childs, Kevin L" uniqKey="Childs K" first="Kevin L" last="Childs">Kevin L. Childs</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Biology, Michigan State University, East Lansing, MI, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, Michigan State University, East Lansing, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ballard, Harvey E" sort="Ballard, Harvey E" uniqKey="Ballard H" first="Harvey E" last="Ballard">Harvey E. Ballard</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental and Plant Biology, Ohio University, Athens, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wyatt, Sarah E" sort="Wyatt, Sarah E" uniqKey="Wyatt S" first="Sarah E" last="Wyatt">Sarah E. Wyatt</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental and Plant Biology, Ohio University, Athens, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Viola</i>
is a large genus with worldwide distribution and many traits not currently exemplified in model plants including unique breeding systems and the production of cyclotides. Here we report
<i>de novo</i>
genome assembly and transcriptomic analyses of the non-model species
<i>Viola pubescens</i>
using short-read DNA sequencing data and RNA-Seq from eight diverse tissues. First,
<i>V. pubescens</i>
genome size was estimated through flow cytometry, resulting in an approximate haploid genome of 455 Mbp. Next, the draft
<i>V. pubescens</i>
genome was sequenced and assembled resulting in 264,035,065 read pairs and 161,038 contigs with an N50 length of 3,455 base pairs (bp). RNA-Seq data were then assembled into tissue-specific transcripts. Together, the DNA and transcript data generated 38,081
<i>ab initio</i>
gene models which were functionally annotated based on homology to
<i>Arabidopsis thaliana</i>
genes and Pfam domains. Gene expression was visualized for each tissue via principal component analysis and hierarchical clustering, and gene co-expression analysis identified 20 modules of tissue-specific transcriptional networks. Some of these modules highlight genetic differences between chasmogamous and cleistogamous flowers and may provide insight into
<i>V. pubescens'</i>
mixed breeding system. Orthologous clustering with the proteomes of
<i>A. thaliana</i>
and
<i>Populus trichocarpa</i>
revealed 8,531 sequences unique to
<i>V. pubescens</i>
, including 81 novel cyclotide precursor sequences. Cyclotides are plant peptides characterized by a stable, cyclic cystine knot motif, making them strong candidates for drug scaffolding and protein engineering. Analysis of the RNA-Seq data for these cyclotide transcripts revealed diverse expression patterns both between transcripts and tissues. The diversity of these cyclotides was also highlighted in a maximum likelihood protein cladogram containing
<i>V. pubescens</i>
cyclotides and published cyclotide sequences from other Violaceae and Rubiaceae species. Collectively, this work provides the most comprehensive sequence resource for
<i>Viola</i>
, offers valuable transcriptomic insight into
<i>V. pubescens</i>
, and will facilitate future functional genomics research in
<i>Viola</i>
and other diverse plant groups.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30828342</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptomics Identifies Modules of Differentially Expressed Genes and Novel Cyclotides in
<i>Viola pubescens</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>156</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2019.00156</ELocationID>
<Abstract>
<AbstractText>
<i>Viola</i>
is a large genus with worldwide distribution and many traits not currently exemplified in model plants including unique breeding systems and the production of cyclotides. Here we report
<i>de novo</i>
genome assembly and transcriptomic analyses of the non-model species
<i>Viola pubescens</i>
using short-read DNA sequencing data and RNA-Seq from eight diverse tissues. First,
<i>V. pubescens</i>
genome size was estimated through flow cytometry, resulting in an approximate haploid genome of 455 Mbp. Next, the draft
<i>V. pubescens</i>
genome was sequenced and assembled resulting in 264,035,065 read pairs and 161,038 contigs with an N50 length of 3,455 base pairs (bp). RNA-Seq data were then assembled into tissue-specific transcripts. Together, the DNA and transcript data generated 38,081
<i>ab initio</i>
gene models which were functionally annotated based on homology to
<i>Arabidopsis thaliana</i>
genes and Pfam domains. Gene expression was visualized for each tissue via principal component analysis and hierarchical clustering, and gene co-expression analysis identified 20 modules of tissue-specific transcriptional networks. Some of these modules highlight genetic differences between chasmogamous and cleistogamous flowers and may provide insight into
<i>V. pubescens'</i>
mixed breeding system. Orthologous clustering with the proteomes of
<i>A. thaliana</i>
and
<i>Populus trichocarpa</i>
revealed 8,531 sequences unique to
<i>V. pubescens</i>
, including 81 novel cyclotide precursor sequences. Cyclotides are plant peptides characterized by a stable, cyclic cystine knot motif, making them strong candidates for drug scaffolding and protein engineering. Analysis of the RNA-Seq data for these cyclotide transcripts revealed diverse expression patterns both between transcripts and tissues. The diversity of these cyclotides was also highlighted in a maximum likelihood protein cladogram containing
<i>V. pubescens</i>
cyclotides and published cyclotide sequences from other Violaceae and Rubiaceae species. Collectively, this work provides the most comprehensive sequence resource for
<i>Viola</i>
, offers valuable transcriptomic insight into
<i>V. pubescens</i>
, and will facilitate future functional genomics research in
<i>Viola</i>
and other diverse plant groups.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sternberger</LastName>
<ForeName>Anne L</ForeName>
<Initials>AL</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bowman</LastName>
<ForeName>Megan J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, Michigan State University, East Lansing, MI, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kruse</LastName>
<ForeName>Colin P S</ForeName>
<Initials>CPS</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Childs</LastName>
<ForeName>Kevin L</ForeName>
<Initials>KL</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, Michigan State University, East Lansing, MI, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ballard</LastName>
<ForeName>Harvey E</ForeName>
<Initials>HE</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wyatt</LastName>
<ForeName>Sarah E</ForeName>
<Initials>SE</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental and Plant Biology, Ohio University, Athens, OH, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>figshare</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.6084/m9.figshare.7409360.v1</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>02</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Front Plant Sci. 2019 Mar 18;10:278</RefSource>
<PMID Version="1">30936885</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Viola pubescens</Keyword>
<Keyword MajorTopicYN="N">chasmogamous</Keyword>
<Keyword MajorTopicYN="N">cleistogamous</Keyword>
<Keyword MajorTopicYN="N">cyclotides</Keyword>
<Keyword MajorTopicYN="N">gene co-expression analysis</Keyword>
<Keyword MajorTopicYN="N">genome assembly</Keyword>
<Keyword MajorTopicYN="N">mixed breeding</Keyword>
<Keyword MajorTopicYN="N">transcriptomics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>01</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30828342</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2019.00156</ArticleId>
<ArticleId IdType="pmc">PMC6384259</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8913-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10430870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):45-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Dec 17;294(5):1327-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10600388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 May;25(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Jun;13(6):1281-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Jun;13(6):1293-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10614-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11535828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2002 Mar;27(3):132-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11893510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Ther. 2002 Apr;1(6):365-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12477048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 26;303(5666):2022-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Sep;13(9):2178-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12952885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2730-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Mar 24;23(6):1217-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15014450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Jan;10(1):30-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W465-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Feb;9(1):21-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16337828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2006 Nov;119(6):599-616</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16937025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 May 1;23(9):1061-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17332020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Sep;19(9):2822-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17873092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Sep;19(9):2736-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17890372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D206-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17986451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2008 Feb;69(4):939-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18191970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Mar;13(3):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18314376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2008 Sep 9;18(17):1338-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18718758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Oct 01;9:451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18826656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Sep;20(9):2471-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18827180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2009 Feb 15;431(1-2):23-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19071200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Dec 29;9:559</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19114008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Jun;19(6):1117-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19251739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 1;25(15):1972-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):490-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20018663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2008 Jan;1(1):42-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20031913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 May 18;107(20):9458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20439704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2010 May;59(3):307-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2010 Nov;137(21):3633-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20876650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Mar 15;27(6):764-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jan 25;21(2):120-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21236675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Apr 15;27(8):1164-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21335321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23(3):973-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 May 15;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2012 Jan;61(1):107-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21918178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jan;158(1):423-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22065421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Jan 1;29(1):15-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23104886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D8-D20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23193264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):761-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23267111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2013 Nov;93(9):1844-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23859423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Sep 25;4:381</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24093023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Nov 15;8(11):e80934</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24260515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Feb;164(2):513-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24306534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Genet. 2013 Nov 29;4:237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24348509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2015 Jan;64(1):84-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25281848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Jul;8(7):983-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25598141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2014 Oct 27;3:17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25625010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2015 Apr;13(3):282-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25641615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2015 Apr 15;178:17-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25756919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2015;2015:735087</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25815333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Oct 1;31(19):3210-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26059717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genesis. 2015 Aug;53(8):474-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26201819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2015 Nov 6;14(11):4851-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26399495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Oct 27;6:855</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26579135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 May 20;16(1):114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27207270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Biol. 2017 Mar;7(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28250106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACM Trans Intell Syst Technol. 2016 Oct;8(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28344853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2017 Jul 15;33(14):2202-2204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28369201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nat Prod. 2017 May 26;80(5):1522-1530</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28471681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2017 Nov;40(11):2571-2585</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28732105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 Nov 15;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29140247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2017 Dec 11;18(12):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29232921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Pharmacol Toxicol (Copenh). 1973;33(5):400-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4801084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Jul 29;78(2):203-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7913881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Jun 26;93(7):1219-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9657154</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
<li>Ohio</li>
</region>
<settlement>
<li>East Lansing</li>
</settlement>
<orgName>
<li>Université d'État du Michigan</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Ohio">
<name sortKey="Sternberger, Anne L" sort="Sternberger, Anne L" uniqKey="Sternberger A" first="Anne L" last="Sternberger">Anne L. Sternberger</name>
</region>
<name sortKey="Ballard, Harvey E" sort="Ballard, Harvey E" uniqKey="Ballard H" first="Harvey E" last="Ballard">Harvey E. Ballard</name>
<name sortKey="Bowman, Megan J" sort="Bowman, Megan J" uniqKey="Bowman M" first="Megan J" last="Bowman">Megan J. Bowman</name>
<name sortKey="Childs, Kevin L" sort="Childs, Kevin L" uniqKey="Childs K" first="Kevin L" last="Childs">Kevin L. Childs</name>
<name sortKey="Kruse, Colin P S" sort="Kruse, Colin P S" uniqKey="Kruse C" first="Colin P S" last="Kruse">Colin P S. Kruse</name>
<name sortKey="Kruse, Colin P S" sort="Kruse, Colin P S" uniqKey="Kruse C" first="Colin P S" last="Kruse">Colin P S. Kruse</name>
<name sortKey="Wyatt, Sarah E" sort="Wyatt, Sarah E" uniqKey="Wyatt S" first="Sarah E" last="Wyatt">Sarah E. Wyatt</name>
<name sortKey="Wyatt, Sarah E" sort="Wyatt, Sarah E" uniqKey="Wyatt S" first="Sarah E" last="Wyatt">Sarah E. Wyatt</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000651 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000651 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30828342
   |texte=   Transcriptomics Identifies Modules of Differentially Expressed Genes and Novel Cyclotides in Viola pubescens.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30828342" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020